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Institute for Information Sciences, University of Tiibingen, Tubingen, West Germany 

Received 30 November 1981, in final form 26 April 1982 

Abstract. A general and unifying theory of nth-order phase transitions is developed by 
combining catastrophe theory with self-similar fractal lattices. The scaling laws governing 
the latter imply the relation D = (c +2)(2- q ) / c  between the dimension D of the fractal 
lattice and the codimension c = 2n - 2 of the free energy topological normal forms 
characterising isolated nth-order transitions. This together with the Euclidean dimension 
of the real system yields numerical values for bicritical, tricritical and tetracritical exponents 
which are in very good agreement with experiment and those of solvable models. The 
results are independent of the details of the interaction because nth-order phase transitions 
are essentially topological phenomena. 

1. Introduction 

This paper is a direct continuation and extension of a preceding one (Keller 1981, 
hereafter referred to as I; further references may be found in this paper) in which a 
lattice model with non-integer (fractional) dimensionality and the cusp singularity of 
catastrophe theory were combined with scaling principles to describe second-order 
phase transitions in a fluid; The model led to critical exponents within experimental 
accuracy. As announced in I, we generalise this model in the present paper to nth-order 
critical phenomena, i.e. to n-critical phase transitions. Adopting the notation of I 
and Griffiths’ terminology (Griffiths and Wheeler 1970, Griffiths 1973, Griffiths and 
Widom 1973, Widom 1973, Griffiths 1974), we call an n-critical phase transition 
bicritical if n = 2, tricritical if n = 3, tetracritical if n = 4, and so forth. Characteristic 
for an n-critical phase transition is a special set of values, the n-critical exponents. 
The objective of our analysis is to calculate numerical values for the corresponding 
bicritical, tricritical and tetracritical exponents. The results are in very good agreement 
with both experiment and exact model solutions and independent of the details of 
the interaction. 

The motivation for using catastrophe theory on a fractal lattice to derive critical 
exponents of equilibrium phase transitions was explained in I. A general physical 
interpretation is given in § 6 .  The idea is to classify the singularities and bifurcation 
properties of the free energy corresponding to a fractal lattice Hamiltonian (on spaces 
with non-integral dimension D) in terms of the Thom-Arnol’d topological normal 
forms of singularities of maps and using the scaling laws governing the self-similarity 
of fractals (Mandelbrot 1977). Combining catastrophe theory with fractional 
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dimensionality is imperative because (i) equilibrium phase transitions are structurally 
stable phenomena, (ii) order parameters of three-dimensional and two-dimensional 
Ising models cannot be diff eomorphically related to each other, (iii) the dimensioqality 
of tetracritical and higher-order transitions is a non-integer even in the Landau limit 
unless two order parameters are introduced, and (iv) long-range interaction is induced 
by nearest-neighbour interaction in systems with intrinsic fractional dimension. In a 
sense, the non-diffeomorphic relation between physical and formal parameters is 
induced by the fractal dimensionality of the lattice model. 

In § 2 we set up the lattice model. A closed physical system can be covered 
completely by N samples at time to. We assume that for each sample m physical 
quantities, i.e. micro-observables, have been measured. The result is a set of N state 
vectors w i  E R" (1 s i s N ) .  We assign each vector to precisely one site z, of a lattice 
L with spacing lo and dimension D E R,. D needs not to be an integer. The lattice L 
defines a complete static model of the physical system at time to iff the set of 
measurements is complete. In genxal,  for t> to, w,(t) # w,(to) (1 s i s N )  because 
of the real interaction between the samples in the physical system. To simulate this 
time behaviour of w,(t) in the lattice model we use a Hamiltonian with only nearest- 
neighbour interaction. This gives rise to a partition function and a free energy F. The 
system automatically acquires long-range interaction by virtue of the model's fractional 
dimensionality (cf 0 6 and Guttinger and Keller 1982). The next step is to define unit 
volumes whose lateral extension 1 is of the order of the correlation length 5 and so 
contain many samples (1 >> lo), at least near an n-critical phase transition of the system. 
If F, the free energy per unit volume, is either smooth or at least continuous on a 
compact connected set S E  R", we can classify the possible singularities of fi at an 
n-critical isolated point in phase space in terms of the Thom-Arnol'd polynomial 
normal forms (Thom 1975). 

In 9 3 some elementary physical consequences will be drawn concerning the 
macroscopic stable states of the model. The Maxwell convention (Fowler 1972, Thom 
1975) will be deduced and the connection between Gibbs' phase rule and the 
codimension of the normal forms of catastrophe theory will be established. In § 4, 
we determine the Hausdorff-Besicovitch dimension D of the lattice by changing the 
size of the unit volumes through scaling. It is found that D depends essentially on 
the codimension c ( n )  of the normal forms and weakly on a small additional parameter 
77. Furthermore, the relation between the mathematical parameters of the normal 
forms and measurable quantities of the physical system will be derived using scaling 
arguments. 

Critical, tricritical and tetracritical exponents will be calculated in § 5 .  These 
exponents turn out to depend strongly on the dimension D of the fractal lattice and 
on the Euclidean dimension D of the physical system, and weakly on another small 
parameter f j .  The two free parameters 77 and f j  could not be derived from basic 
properties of the model but are necessarily small, 0 s 1771 s 0.1,O < l f j  1 < 0.1. For 77 = 0 
the dimension D is determined by the order n of the phase transition and fi = 3 for 
a real physical system. The n-critical exponents calculated with 7 = 0 and = 0 yield 
realistic improvements over Landau exponents but do not give exactly the experimental 
mean values. However, a small deviation of 77 and i j  from zero yields a very good 
fit with experimental data. Furthermore, small variations of 7, i j  allows us to reproduce 
the n th-order critical exponents of various theories in the following way. We replace 
the physical system by a fi-dimensional model system, i.e. if our fractal lattice simulates 
another model, we have to use D for the model system. If f j  is known in that model 
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we insert its value in our formulae for the n-critical exponents. If it is not, we have 
to choose 77, f in an appropriate way. This enables us to derive numerical values for 
bicritical, tricritical and tetracritical exponents which are within experimental accuracy 
and also the exponents known from Landau theory, Ising model theories, Heisenberg 
models and Schofield's equation of state. Finally, in § 6 ,  we summarise our findings, 
interpret the results and sketch related further developments. 

2. Lattice model for n th-order phase transitions 

We consider a thermodynamic system of given extension which undergoes a phase 
transition of nth order (cf e.g. Griffiths and Wheeler 1970, Stanley 1971, Blume 1972, 
Griffiths and Widom 1973, Widom 1973, Keller eta1 1979). The system may represent 
a real physical one with integer dimension fi = 3 or a theoretical model system. The 
system's behaviour is macroscopically controlled by a set of control variables i= 
(Zl, , , . , &), representing temperature, magnetic field, chemical potentials, pressure, 
etc, which form a control space U = R k  of integer dimension k. Since some of the 
control variables may be unknown or not accessible experimentally, k is a prior? not 
determined by the order n of the transition. We assume that the phase transition 
occurs at the value i = 

The different phases or macroscopic states of the system are distinguished by the 
average values of m micro-observables w which are defined by a set of m independent 
measurements made at an arbitrary microscopic sample. The set of micro-observables 
forms a vector w E E c [w" where E is the space of internal state variables. For 
example, in the case of a magnetic system, a micro-observable may be the magnetic 
moment per atom or molecule or groups of these. For a mixture such as CH30H-H20- 
COz, the micro-observables may represent the set ( n l ,  n2 ,  n3) ,  where nl, n2 and n3 
denote the number of CH30H, HzO and CO2 molecules in a small volume U (of the 
order of, say, 100 A), respectively. 

The spatial closure of the thermodynamic system in a B-dimensional Euclidean 
space implies that the system can be covered completely by a finite number N of 
samples. Consequently, at each time the system is described by a set of N state 
vectors, w j  = w j ( t )  (1 sj s N). Since wi is time dependent the samples interact 
mutually. We assign each vector w i ( t )  precisely to one lattice site z j  of aD-dimensional 
abstract lattice with lattice spacing lo. This lattice dimension D (not to be confused 
with B) may take any positive real value and the lattice will therefore be called a 
fractal lattice. The need for using fractal dimensions in phase transitions has been 
emphasised by Keller (I) and Gefen et a1 (1980) and will be discussed by us in the 
more general context of critical and universal phenomena in a forthcoming paper. 
Neighbouring samples do not necessarily correspond to neighbouring lattice sites 
because if D # fi such a correspondence is quite impossible to establish (cf 9 6) .  

Interaction in the fractal lattice model is defined by introducing a Hamiltonian H 
representing nearest-neighbour interaction of the vectors wi (1 s j s N ) ,  

and define reduced variables zj by l;i = (Cj - z&o)/&,. 

where w (zi, t )  = w i ( t )  and << zi, zi >> denotes summation over nearest meighbours only. 
The dot in the braces in (2.1) may either be understood as denoting the scalar product 
w j  0 wT or as some other product, e.g. (wi  * w T )  - (wi / lwi l ) .  The constant J in (2,l) 
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does not necessarily represent a physical coupling constant because such a physical 
coupling is difficult to define if, e.g., w = (ill,  nZ ,  n 3 )  as in the case of a ternary mixture. 
However, not the details but only the type of the interaction plays a significant role 
in the proposed theory, which reflects its universality. 

The Hamiltonian gives rise to the partition function 

(2.2) 

Here, the asterisk indicates that summation goes over the possible configurations and 
p = l / k T ,  where k is the Boltzmann constant and T the temperature. The free energ) 
9 is given by 

S= --p--' I n ( Z ) .  (2.3) 

The macroscopic order parameter j is defined as the ensemble average of the 
microscopic order parameter w ,  

(2.4) 

Although, by definition, w is a measurable quantity, this is not necessarily the case 
for y' because the ensemble averages are calculated for a D-dimensional and not a 

= 3-dimensional system. But y' is a function of a measurable macroscopic order 
parameter which depends on w, too. Equations (2.3) and (2.4) tell us that the free 
energy depends on U' and j ,  although one cannot solve equations (2.3) and 12.31 
explicitly for F(j7, U') except for very special cases. To be able to apply scaling 
arguments in D4 we divide the total lattice into unit volumes V or blocks. The 
extension I of each block is assumed to be large compared with lo but much smaller 
than the total extension L of the system. Since near a critical point the correlation 
length 6 satisfies this condition, we choose 1 to be of the order of 6, say, 1 I- 6. Then 

(2.5) 

is the free energy per unit vohme. Since the quantities Z, ,f3 and ? ' are real scalars, 
fi : E  X fi + R is a real-valued potential function. Let j C  be the critical value of the 
macroscopic order parameter y" and let us introduce the reduced order parameter 
y = (y' - $,)/y',. The potential function E(y, U') must be globally bounded below in E 
for otherwise the partition sum would diverge. Hence, F(y,  U )  is even in y .  i .e. in 
each component of y.  

At this stage we can apply catastrophe theory (Thom 1975. Guttinger and 
Eikemeier 1979, I) to predict the physical behaviour of the system. Let us choose a 
compact and connected subset l? of E. The only assumption we need is that E is a t  
least continuous on g. Then can be approximated by another potential function 
F.(y)_=F(y,  U )  to any degree of accuracy where F is a polynomial in y of order s q ' .  
and IF - F /  < F ( 4 ' )  + 0 as q'+ CO. In F a new parameter U E Rq' appears which depends 
on i, though in general not in a diffeomorphic way. F is even in y as is E, and smooth. 
The coalescence of phases, i.e. of macroscopic states, at an n-critical phase transition 
point implies that and, therefore, F is a singularity (see, e.g. Stewart 1981 and 1 
for definitions), i.e., F,(y) is a singular member of the family F,(y) .  Singularities can 
be classified in terms of the Thom-Arnol'd topological normal forms of codimension 
e :  =codimF (see e.g. Stewart 1981, Guttinger and Keller 1982i, where thc 

E = $1 y 
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codimension is a measure for the degree of degeneracy of the singularity. Normal 
forms which are odd in y are excluded because F,(y) is even in y. 

By their very definition, bicritical, tricritical, tetracritical, pentacritical, . , . transi- 
tion phenomena possess codimension c = 2,4 ,6 ,8 ,  . . . , respectively, and comparing 
c with the order n = 2 ,3 ,4 ,5  . . . of the phase transitions one sees at once that 

c = 2 n - 2  (2.6) 

Consequently, for an n-critical phase transition we obtain near u0 

F(y, U )  a V2n-2(x, a ) +  Q 2 n - 2 ( x ‘ ,  a’) 
Cm 

(2.7) 

where for n 3 4  x may possess two components. In (2.7) Vzn-2(x, a )  is the standard 
Thom-Arnol’d catastrophe polynomial of codim c = 2n - 2 and corank ~ 2 ,  while Qc 
are quadratic (Morse) forms in x’ which obviously do not influence critical behaviour. 
The dimension of the space of s’ is m - 1 if x is a scalar and m - 2 if x has two 
components. The dimension of {a’}  is 4’- k. The relation between (x, x‘, a, a’)  and 
(y, U )  is diffeomorphic. 

3. Physical consequences 

In virtue of the splitting lemma, equation (2.7) shows that the multicomponent order 
parameter splits into two parts x, x’ with the number of Components of x restricted 
to at most two, no matter how large the number m of micro-observables w and, 
furthermore, that the space U of relevant control variables is made up of at most 
2n - 2 independent variables, n being the order of the transition. Therefore, at most 
2n - 2 variables can be varied in any experiment to reach an isolated n th-order critical 
point, and if there are no unknown fixed variables or physical symmetries involved, 
then exactly 2n -2 control variables must be varied (cf also Schulman 1973, Keller 
et a1 1979). 

Next, let us focus on the so-called ‘Maxwell convention’ introduced by Thom 
(1975) to discriminate between competing minima of V,. This convention states that 
for a given a the thermodynamic stable states are those with absolute lowest minima. 
As pointed out by Schulman (Schulman and Revzen 1973), Vendrik (1979) and Keller 
(1979) (cf also Coleman and O’Shea 1981) this convention follows from the partition 
function 2 because maxima of 2 correspond to minima of F and 2 has a sharply 
peaked probability distribution (e.g. Kittel 1969). Q possesses only one minimum 
with respect to x’ and therefore does not contribute to a phase transition (a change 
between two different states, xl, XZ). We therefore call x the relevant order parameter 
and disregard Q in the following. Then, in a neighbourhood of uo, 

where the symbol a denotes C“-equivalence up to quadratic remainders Q. Since 
the coordinates in F and V, are related diffeomorphically, the minima of V, with 
respect to x are minima of F with respect to y ( x ) a x + .  . . . Therefore, the lowest 
minima of V, in x determine the most probable macroscopically stable states. The 
space of macroscopically stable states is therefore given by the set 

(3.2) Z ( V, ) = { (x, a )I a V, (x, a )/ax = 0 and I a2 VJax I 3 0) 
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where aV,/ax denotes the gradient of V, and la2 Vc/ax2/ the Hessian. A phase transition 
of the first kind occurs if, for a given a, two or more minima of V, have the same 
absolute lowest value, V,(xl,  a )  = . . . = Vc(x,, a ) .  The set of such points (x, a ) ,  the 
Maxwell set, will be denoted by W ‘  and its projection onto U will be called W .  

Higher-order phase transitions occur if p minima of V,, (2 s p s n )  coalesce. This 
set of coalescence will be denoted by I” and its projection onto U by r (cf Keller et 
a1 1979). It is easily seen that the above sets satisfy the familiar stability criteria for 
phase transitions of kth order (k = 1,2,  . . . , n ) .  

We conclude this section with a remark about Gibbs’ phase rule. Assume that an 
r-component mixture coexists in p phases ( l c p s n ) .  Then, according to Gibbs’ 
phase rule, the number f of independent variables is 

K Keller and W Guttinger 

f = r + 2 - p .  (3.3) 

In our model the values of the order parameter follow once the value of a in the 
control space is prescribed. Therefore, the maximum number of independent variables 
equals fmax = dim U = c = 2n - 2 .  Coexistence of p phases implies p - 1 additional 
conditions for the independent variables. The number of degrees of freedom is, 
therefore, 

f=fm,,-(p-1) 

or 

f = ( f m a x - 1 ) + 2 - p .  i3.4) 

Comparing (3.4) with (3.3), we see that the number of components of the mixture is 
given by (cf also, Keller et a1 1979) 

(3 .5 )  

Consequently, an isolated phase transition point of n th order occurs only in mixtures 
consisting of an odd number of chemical components. This means that single- 
component mixtures possess one isolated bicritical point, ternary mixtures possess 
one isolated tricritical point, and so on. Binary mixtures or alloys exhibit an infinite 
line of bicritical points, quaternary mixtures are characterised by an infinite line of 
tricritical points and so forth. In order to observe an isolated n th-order critical point 
for these mixtures (r even) and to apply the catastrophe theoretic classification scheme, 
it must therefore be possible to fix one thermodynamical variable. 

r = fmax- 1 = 2 n  -3 = c -  1 .  

4. Scaling and transformation laws 

When a critical point is approached, the correlation length diverges with the reduced 
temperature t as 

,$ = itl-” if t > 0 and ,$==ltl-”’if t<0.  (4 .1 )  
Let us, for simplicity, assume that v = v’. To keep the size of the unit volumes constant 
we have to change the fractal’s intrinsic length scale lo by a factor 

s =It/”. (4 .2 )  

By this procedure more and more lattice points will move into one unit volume and 
contribute to Then, either the fractal lattice shrinks or one has to consider samples 
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of increasingly smaller size. To avoid such trouble, either we assume that t varies 
only very near the critical point (without reaching it), or else, as in the fluid case (I), 
we assume that the fractal lattice is infinitely extended, which is justified because L >> I .  

Because of the fractal's inherent self-similarity, changing the length scale transforms 
a volume VI according to 

Ys = s-DV,. (4.3) 

The total free energy remains constant under length scaling and therefore (2 .5 )  and 
(4.3) yield 

I', = s DFl 
and the same transformation law holds for F and the normal polynomials Vc(x ,  a )  
( c  = 2n - 2 ) .  Let us confine ourselves to the cuspoids with dim{x} = 1, i.e. to a single 
scalar order parameter x .  Then 

2n-2 

k = l  
Vc(x, a )  = x2"/2n  + a k x k / k ,  

and ( Vc)s = s D (  V2n)l  yields 

x a S D I z n ,  

a 2 n - 2 a s D / n ,  

(4.4) 

(4.5) 

To eliminate the fractal dimension D in ( 4 4 ,  we use the scaling law for the correlation 
function G ( k )  (cf e.g. I). This is the only ingredient of renormalisation group theory 
one needs. On the one hand y = ( ( w  - w , ) / ~ w c ~ > + s q ( ( w  - w c ) / w c ) )  leads to 

G ( s k )  a s2q-D (4.6) 
while, on the other hand, one knows (Stanley 1971, Ma 1976) that 

Ghk)as- '+" (4.7) 
where q is the critical-point exponent. Comparing (4.6) with (4.7) yields 

q = (D - 2 +  q ) / 2 .  (4.8) 

y and because of the C"-equivalence it follows with (4.5) and (4.8) Now, (x, x') 
that 

D / 2 n  = ( D  - 2 + q ) / 2 ,  

i.e. by virtue of (2 .6) ,  the fractal lattice dimension is given by 

D = n(2 - q ) / ( n  - 1) = ( C  + 2)(2  - q ) / C .  (4.9) 

From experiment one knows that the parameter 77 appearing in (4.7) and (4.9) is very 
small, 0 ~ ~ ~ ~ ~ ~ 0 . 1 .  Therefore, we see that the dimension D of the fractal lattice 
governing the model depends strongly on the order n of the phase transition and very 
weakly on the critical-point exponent q. 

Next we establish a relation between the variables of the fractal lattice and the 
measurable variables of the thermodynamical system under consideration. Let P be 
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the ‘true’ thermodynamic potential per unit volume of the system with Euclidean 
dimension fi. Suppose that in there are as many samples as there are lattice points 
in 7”. Then = r”. Since Fs =Fs if PI =El (i.e. equality of free energies per unit 
volume in system and fractal model holds before and after length scaling) we have that 

S D  = p 
so that with s a  ItlY 

f cr ( t  1 vD/D,  S c r ( f l f i  
where 

(4.10) 

C = vD/B. (4.11) 

Since wi is the measured micro-observable for the j th  sample one can define a reduced 
density m of micro-observables in D-dimensional space. Then the same argument 
used for the correlation function above leads to 

m a ?  (4.12) 

q = (B - 2 +  ?7)/2. 
and 

(4.13) 

Combining equations (4.12), (4.10) and (4.5) yields m cr/t(4‘vD’’ay22rt4/D. For the 
essential component m of m we therefore obtain the relation 

x(m)E m 
with 

(4.14) 

e = B/2n4 = B/n (B - 2 + f). (4.15) 

The line K = { ( x ,  u)ia2 < 0, a l  = 0 ,  a3 = . . . = an-2 = O }  describes the coexistence of two 
phases, i.e. a line of phase transitions of the first kind. From equations (4.2) and (4.5) 
one concludes that 

(4.16) 

h 2  = vD(n  - l ) / n .  (4.17) 

Similarly one obtains the general result that 

(4.18) 

h 2 k  = vD(n - k ) / n .  (4.19) 

W is the field conjugate to m and a l  the conjugate to x .  Therefore 

Waaldx/dm. (4.20) 

The relations between catastrophe variables azd measurable variables of the thermo- 
dynamic system are given by (4.141, (4.18). These relations are diffeomorphic only 
in very exceptional cases. But, as we have seen, a diffeomorphic relation is not 
necessary in applying catastrophe theory because this theory also works for free 
energies defined on spaces with non-integral dimensionality, nor is such a diffeomor- 
phic relation physically possible. The essential point is that the non-diffeomorphic 
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properties are induced by the fractal dimensionality of the lattice. We note that the 
order parameter x(m)  depends on the Euclidean dimension D, whereas the unfolding 
parameters a2,  depend on the fractal dimension D and interrelate through (4.11). 

5. Calculation of critical exponents for n th-order phase transitions 

In this section we calculate the critical exponents for n th-order phase transitions for 
n c 4 .  It will be seen that the computed exponents agree with the observed values 
within experimental accuracy independent of interaction details. 

5.1. Bicritical exponents 

5.1.1. General results. According to (2 .7 ) ,  for a second-order transition ( n  = 2 )  the 
singularity of the fractal lattice free energy is equivalent to the cusp normal form (cf 
also I) 

v~(x ,  a )  = x4/4+ a2x2/2 + alx. (5.1) 

D = 4 - 2 7 .  (5 .2 )  

x ( m )  a m ', a z ( t ) a  t A 2  ( 5 .3 )  

The dimensionality of the fractal lattice is given by equation (4.9) with n = 2 ,  i.e. by 

The transformation laws reduce to 

where, by virtue of (4.15) and (4.17), 

e = D/[2(D - 2 + 591, A 2 =  u D / ~ .  (5.4a, b) 

The equation of state is 

X (VZ) = {(x, al,  a2)lx3+a2x +al  = 0 and 3 x 2 + a 2 a 0 } .  ( 5 . 5 )  

The Maxwell set consists of a single line, the coexistence line w = {(al, a2)lal = 0, 
U Z S  0). On this line we have by virtue of ( 5 . 5 )  x 3 +  azx = 0 or x 2  = -a2, and inserting 
( 5 . 3 )  it follows that 

m a ( - t ) ' J Z e .  (5.6) 
Therefore, the critical exponent p is given by 

p = A2/28 = u ( 2 -  7))(0 - 2 +  ?i)/D. (5.7) 
On the critical isotherm t=  0, we have a2 = 0 and u1= - x  . Hence, with (4 .20) ,  it 
follows that 

(5 .8 )  

~ = 4 e - i .  (5.9) 
The exponent a describes the change of the specific heat c , ( t )  if the critical point is 
approached along the line m = 0, W = 0 and t > 0. Generally, the specific heat for 
constant order parameter m is given by cm = -T(aS/aT),, and S = aF/aT leads to 

(5.10) 

3 

W a m 3 e m e - i  - 48-1 - m  . 
The critical exponent S is given by 

cm = -(1+ t ) ( l / T c ) 2 ( a 2 ~ / a t 2 ) ,  a - (1 + t)(a2V2/at2),/T:. 
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Since both W and m should vanish we insert (4.4) for V2 and obtain with (5.10) 

c,,, a (1 + f ) f v D - '  (5.1 1) 

and because the exponent CY is defined by c,,, - tCa we see that 

a = 2 - v D .  (5.12) 
The exponent a t  describes the specific heat's change when the critical point is 
approached along the coexistence line w .  There x 2 a  t A 2  and V 2 a  t Z A 2  and by virtue 
of (5.10) 

c,,, - (1 + t ) t 2 A 2 - 2 ,  

i.e. with (5.4b) and (5.2) 

(5.13) 

CY' = 2 - 2A2 = 2 - vD. (5.14) 

The generalised susceptibiity is defined by x = (Mc/  Wc)(dm/a W ) ,  and the critical 
exponents y, y' give the change of ,y-' with t 3 0, respectively t G 0, 

(5.15) 

On Z(V2) we have a , ( W ) = - x ~ ( m ) - a z ( t ) x ( m )  and with (5.3) 

a l ( W )  = -m3@ -tk2m". (5.16) 
On the critical isotherm ( f  = 01, a I( U')K m 3e and with (5.8) we obtain the relation 

where 
a l ( W ) a  WA1 (5.17) 

A 1  = 36/(46- 1). (5.18) 

Solving equations (5.17) and (5.16) for W yields 

(5.19) w a (-- tA2m @ - m 3 8 )   AI 

and, therefore, 
x-la ( - t A z m @  - m 3 @  ) (1/Ai-l)(-etA2me-1-3em3*-'). (5.20) 

For the change of m with t + 0, we insert m ~ t " ~ ' ~ @  given by (4.5) into (5.20). This 
yields with A Z  = vD/2 for t a 0 the result 

1 - 1  ( - 2 3 vD/4 (0- 1 )/38(- et vD/2+vD(B - 1 1/48 - 3 etvD'38-1 1/40 X 
and, therefore, 

(5.21) uD (2  B - 1 1/2 0 x-' a t 

We have previously assumed v = U '  and, therefore, m a tY 'D/4e  tYD'4B if t+0-. 
Consequently, 

y = y f = v D ( 2 8 - 1 ) / 2 6 = P ( S - l ) .  (5.22) 

5.1.2. Specification of 7, f and 

In this case we have = 2 and fj = 0.25. The only free parameter 77 will be set equal 
to zero. From the general formulae derived above, it follows then that D = 4 and 
U = 0.5 e = 4, A z  = 1, A 1  = 4/5, and the critical exponents of the two-dimensional king 

for various models. 
( i )  The two-dimensional Ising model 
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model predicted by the fractal lattice model (with D = 4) are a = a’ = 0, p = 1/8, 
y = y ‘ =  7/4, S = 15, F = 1. These values agree with those obtained by solving the 
Ising model exactly (Stanley 1971). 

Here r5 = 3 and f j  = 0. As above we set 7 = 0. In that case the fractal lattice again 
possesses dimension D = 4 and the transformation powers are 8 = 3/2, A 2  = 1, A I  = 
9/10. The critical exponents derived with these values are a = a’ = 0, p = 1/3, y = y’ = 
4/3,6 = 5 ,  V = 2/3, in agreement with the exponents given by Benguigui and Schulman 
(1973) for the approximate solution of the Heisenberg model. 

HereD = 3 but 77 is unknown. We are free to choose 77 = 0 and 7 = 0.12. The dimension 
of the fractal lattice model is then D = 3.76. The critical exponents derived from the 
fractal lattice are easily computed to be a =a’ = 0.12, p = 0.31, y = y’ = 1.25, S = 5 ,  
i; = 0.63. For comparison, the critical exponents calculated by solving the model 
approximately (Ma 1976) are a = 0.13*0.01, p = 0.312:!:,”::, y = 1.25st0.002, S = 
5 k0.05, v = 0.638-0,001, and (Stanley 1971) a =a’= 0.125, p = 0.312, y = y ’ =  1.25, 
S = 5 ,  i; = 0.638, i j  -7 0.04. 

Here D = 3 is prescribed. We choose 7 = -0.2 and 77 = 0.05. This choice gives D = 4.4, 
8 = 1.43 and A l  = 1.1 and the critical exponents turn out to be a = a‘ = -0.24, p = 0.38, 
y = y‘ = 1.42, v = i7 = 0.78,6 = 4.72. This result is to be compared with the one quoted 
by Ma (1976), namely a =a’= -0.20*0.08, y = 1.43*0.01, v = U ’ =  0.70*0.03. 

(U) ?‘he three-dimensional Heisenberg model with arbitrary spin in three-dimensional 
space 
D = 3 as above, but we may choose 7 = -0.14 and f j  = 0.6. The result is then D = 4.28 
and 6 = 1.41, A 2  = 1.07 which yields the exponents a =a’= -0.14, p = 0.38, y = y ’ =  
1.38, S =4.64, v = 0.71 for our model. Ma (1976) gives the exponents a = -0.14* 
0.06, p = 0.38 f 0.03, y = 1.375::::?!, v = 0.703 * 0.010 which agree quite well with 
our results. However, the value for 77 necessary in our theory is very large. 

Let D =D and 77 = f j  = O .  Then we get the exponents a =a‘=O,  y =  y ‘ =  1, p =0.5, 
S = 3, v = v ’  = 0.5 of the Landau theory. The dimension of the fractal lattice is D = 4 
and the relation between catastrophe theory variables and Landau theory variables 
is diffeomorphic as 8 = 1, A 2  = 1 indicates. 

As above, small variations of 7, f j ,  will yield slightly different exponents like those 
found in experimental investigations (compare tables 1-3). 

( i i )  The three-dimensional Heisenberg model with infinite spin 

(iii) The three-dimensional Ising model 

+0.002 

( iu )  The three-dimensional Heisenberg model with two spins ( s  = *1/2) 

( v i )  The Landau theory 

(uii)  The real three-dimensional thermodynamical systems 

Table 1. Measured critical exponents for some ferromagnetic systems (Kittel 1969). 

Material Y P T, in K 

Fe 1.33kO.015 0.34 * 0.04 1043 
CO 1.21*0.04 - 1388 
Ni 1.35 k0.02 0.42 k 0.07 627.2 
Gd 1.30f0.10 - 292.5 
CrOz 1.63 f 0.02 - 386.5 
CrBr3 1.21 *0.02 0.37 jz0.01 32.6 
EuS - 0.33 f 0.02 16.5 
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Table 2. Critical exponents for different systems (Ma 1976). 

Critical 
points Material 

Antiferro- 
magnetic 

Liquid- 
gas 

Y 

Binary 
mixture 
Binary 
alloy 
Ferro 
electric 

CoC12.6HzO 

FeF2 

RbMnF, 

CO2 

Xe 

He3 

He4 

He4 

CC14-C7F14 

Co-Zn 

Triglycine 
sulphate 

Uniaxial 2.29 

Uniaxial 78.26 

Isotropic 83.05 

n = l  304.16 

289.74 

3.3105 

5.1885 

1.8-2.1 

n = l  301.78 

n = l  739 

n = l  322.6 

a<0 .11  
a '<0.19 
a=a' 

=0.112 
+0.044 

a =a' 
= -0.139 

+0.007 
a = 1/8 

a =a' 
= 0.08 
rt0.02 

a <0.3 
f f '<0.2 

a = 0.127 
a '=0.159 

-0.04< 
a =a'<O 

0.23 * 
0.02 

0.316* 
0.008 

0.3447* 
0.0007 

0.344* 
0.003 

0.361 * 
0.001 

0.3554k 
0.0028 

0.335* 
0.02 
0.305 * 
0.005 

y = 1.397 
zk0.034 

Y = Y '  4.2 
= 1.20 

*0.02 
Y = Y '  4.4 f 

= 1.203 0.4 
*0.002 

= 1.15 
Y = Y '  

*0.03 
Y = Y '  

= 1.17 
+0.0005 

y =  1.2 =4 

y = 1.25 
*0.02 

Y = Y '  
= 1.00 

+0.05 

Table 3. Measured critical exponents for selected systems (Stanley 1971). 

System T<To T = T o  T>TO 

a' P Y '  If' 6 ?I a Y I/ 

Fluids 
CO2 -0.1 0.34 -1.0 - 4.2 - -0.1 1.35 - 
Xe <0.2 0.35 -1.2 0.57 4.4 - - 1.3 - 
Magnets 

4.22 - 0 1.35 - Ni L Y ;  = -0.3 0.42 
EuS a: = -0.15 0.33 - - - - 
CrBrz - 0.368 - - 

- - 

- 0.05 - 
4.3 - - 1.215 - 

We choose 7, 77 to get the best fit for the mean values from tables 1-3. This is 
achieved by 7 = 0.04 and 77 = 0.08, because then D = 3.92 and 8 = 1.38, h Z  = 0.98 
gives for the fractal lattice model the exponents 

c u = a ' = 0 . 0 4 , P = 0 . 3 5 ,  y = y ' = 1 . 2 5 , 8 = 4 . 5 2 ,  i;=O.65 
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which should be compared with the mean values from tables 1-3, i.e. with a = 
0.05f0.08, a’=0.03f0.16, p=O.34fO.O4, y=1.27*0.13, y’=1.13*0.09, S =  
4.25 f 0.14, V = 0.60 f 0.03. 

5.2. Tricritical exponents 

5.2.1. General results. According to (2.7) the singularity of the fractal lattice free 
energy for third-order phenomena is determined by the butterfly catastrophe normal 
form 

V(x, a )  =x6 /6+a lx  +a2x2/2+a3x3/3+a4x4/4, (5.23) 

The fractal dimension is D = 3(2 - 77)/2, i.e. D = 3 since 77 is small. A variety of 
examples-ternary mixtures, ferroelectrics and ferromagnetics, superfluid helium etc- 
(cf Keller et a1 1979) fall into this class. 

In analogy with § 5.1 we find 

0 = D[3(B - 2 + i j  )], 

A 2  = 2vD/3. 

(5.24) 

(5.25) 

The tricritical exponents depend strongly on the path along which the tricritical point 
is approached (Riedel and Wegener 1974, Vohrer and Brezin 1976, Griffiths 1973, 
Yelon 1973), and logarithmic corrections to the power laws appear in some models. 

Pure exponents can be defined only in some domains of the control space. Between 
these, in the crossover regions, one has concurrent behaviour between the critical and 
the tricritical fixed points. Only effective exponents are measurable. Pure tricritical 
exponents are obtained when the tricritical point is approached within a small cone 
whose axis is identical with a2. Then, following the same lines of reasoning as above, 
we obtain by virtue of A 4  = A2/2 and with al = a3 = 0 on the coexistence areas El and 
E2 (see Keller et a1 (1979) for the explicit equations for El  and E2)  the general 
tricritical exponents 

CY = 2- 3A2/2, B = A 2 / 4 0 ,  y = yr  = p(S - l) ,  S =60-  1, 

CY’= 2-2A2. (5.26) 

It should be observed that a # a’ in contrast with the bicritical case. 

5.2.2. Specification of q, f j  and fi 

Here we have again D = fi and q = fj = 0. Equations (5.24), (5.25) and (5.26) yield 
then: D = 3, 0 = 1, A 2  = 1 iff v = 112. The tricritical exponents derived from the fractal 
model are a = 0.5, a’ = 0, p = 0.25, y = y’ = 1, S = 5, V = 0.5 and coincide with those 
of the Landau theory (e.g. Benguigui 1972). 

(ii) Let us choose 77 = 0.09, f j  = -0.27. Then D = 2.86, whence (with v = 0.5 as 
usual) we get 0 = 1.37 and A 2  = 0.96 and therefore a = 0.56, a‘= 0.08, p = 0.18, 
y = y r  = 1.09, S = 7.22, z j  = 0.48. 

With the exception of a’, the above exponents agree quite well with those deter- 
mined by Kortman (1972) from Schofield’s equation of state (Schofield 1969): Kortman 
obtains a =a’= 0.57, p = 0.17, y = 1.13, y’= 1.06, S = 7.25. In table 4 we quote 

(i) The Landau case 
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some experimentally measured tricritical exponents and their mean values. The value 
p = 0.16 (*) in table 4 was neglected in calculating the latter because the point 
investigated by Benepe and Reese (1967) is probably tetracritical. 

Table 4. Experimental tricritical values for selected systems: (1) Jahn and Neumann 
(1973) for NH4CI,Brl-,, (2) Strukov et a1 (1968) for KH2P04, (3) Yelon (1973) for 
ND4C1, (4) Egert eta1 (1971) for N h B r ,  (5) Benepe and Reese (1967) for KH2P04. 

~~~~ ~~ ~~ ~~ 

a' a Y Y '  s P __ ___ .- - 
- - - - -0 25 

I 0.51*0.01 - I >S =0.25 
(1) 

(3) - 0.59 1.05 1-0.2 - - 0.18 1- 0.01 
( 2 )  

- I - - - 0.25 +0.02 
(5) - 0.5-0.66 21 -1  - 0.16 (*) 
(4) 

Mean values O(?) 0.56 & 0.07 1.02i0 .03  -1 2 5  0.23 i0.03 

- 

The best fit to the mean values is obtained with 7 = 0.09, f j  = -0.06. This implies 
D = 2.86 and 8 = 1.06, A = 0.96.  The exponents derived from (5 .26)  are cy'= 0.08, 
a = 0.56,  p = 0.23,  y = y' = 1.21, S = 5.26 and P = 0.42 in excellent agreement with 
the experimental results. 

5.2.3. Bicritical exponents from the parameters for best fit (17 = 0.09, fj = -0.06). The 
semiaxis a4 3 0 is a line of critical points and so (0, 0, 0, 1 )  is a critical point in phase 
space ((0, 0, 0,O) being the tricritical point). On the coexistence set E1 (Keller et a1 
1979) we approach this point along the line t = ( (0 ,  a2,  0,  l ) / a z  G 0). Then V4(x, a )  = 
x 6 / 6  + x 4 / 4  + a 2 x 2 / 2  is the free energy along this line. On this line the terms x 6  and 
x 4  cannot scale equally. Hence, to apply scaling arguments we have to neglect one 
of those terms, either x4 if x >> 1 or x 6  if x << 1 .  Since x = 0 at the critical point 
(0, 0, 0, 1 )  we neglect the x6 term and obtain V4(x, a )  ==x4 /4+  a 2 x 2 / 2 .  Since aAt )  
scales as a 2 E  t2vD/3 for tricritical phenomena (cf (5 .26))  but a 2 E  t"" for bicritical 
phenomena (cf (4.16) with n = 2, k = l ) ,  we conclude that 3 = 4 v / 3  and v' = 4 D v / 3  = 
0,635. The transformation exponent A remains unchanged ( A 2  = 0.96),  but in the step 
leading from (4 .13)  to (4 .14)  we have to replace v by 3 and obtain 6bc = 48,, /3 = 1.41. 
These values for h 2 ,  ebc inserted in the equations for critical exponents derived from 
V4(x,a)yield(cf (5.12),(5.14),(5.7),(5.22)and(5.9))a = a ' = 0 . 0 8 , @ = 0 . 3 4 , y = y f =  
1.24, S = 4.64, F = 0.635 in good agreement with § 5.1.2 (vii). 

5.3. Tetracritical exponents using one order parameter 

5.3.1. General results. A tetracritical phenomenon is governed by the star catastrophe 
normal polynomial V6 if a single order parameter is used: 

(5.27) 

The dimension of the fractal lattice follows from equation (4 .9):  
D = 4 ( 2  - 77)/3. (5.28) 

It is obvious that the tetracritical exponents depend even more sensitively than the 
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tricritical ones on the path in the phase diagram along which the tetracritical point is 
approached. We approach the tetracritical point along the a2  axis or in a small cone 
around this axis. Following the lines pursued in § 5.1, we obtain the following general 
formulae for the tetracritical exponents: 

CY = 2-4A2/3, CY’ = 2- 2A2, P = Az/66, 

y = y’= P ( S  - l), S=86-1,  F = D/2D (5.29) 

where 

6 = D/[4(D - 2 + e)], A 2 =  3vD/4. (5.30) 

5.3.2. Specification of q, f j  and D 
(i) To reproduce the Landau theory we set D = D and q = ?j = 0. This yields 

D = 813 = 2.67 for the dimension of the fractal lattice. The resulting transformation 
exponents are 6 = 1 and A 2  = 1 and lead to a = 213, a’ = 0, P = 116, y = y’= 1, S = 7, 
F = 112 in agreement with the Landau exponents of KHZP04 calculated by Benguigui 
(1972). 

(ii) Only very few experimental data are known to us for tetracritical phenomena. 
For ND4Cl one has p = 0.15 (Yelon 1973) and 0.5 S a  S0.66, P = 0.16, y = y’= 1 
quoted by Benepe and Reese (1967) for KH2P04 indicate tetracritical behaviour, too. 
We have computed the exponents from equation (5.30) for various choices of q, 4. 
The results for 0 s 1q I s 0.1 and 0 c I f /  c 0.1 are altogether very close, but the best 
choice is q = 0.1 and f j  = -0.1, namely D = 2.53, 6 = 0.83, A 2  = 0.95 whence a = 0.73, 
a’=O.lO,P=0.19, y=yf=O.88,S=5.64, F=O.42. 

6. Interpretation and conclusion 

We have constructed and analysed a general model for n th-order phase transitions 
by assigning m measurements made at a microsample, i.e. an m-vector, to a lattice 
point of a D-dimensional fractal lattice. Without making any special assumptions 
about details of the interaction and without evaluating the partition sum of the fractal 
lattice explicitly, a wealth of numerical data and information about critical exponents 
was readily obtained by classifying the lattice free energy F by means of the topological 
normal forms of catastrophe and singularity theory. This classification is possible if 
F is smooth or at least continuous on a proper compact and connected subset in the 
space of measurement variables. Qualitative topological features of phase diagrams 
and their bifurcation properties follow immediately without any specific physical 
assumptions or knowledge of the dimensionality D. The reason for this universality 
is that by virtue of their structural stability, n th-order phase transitions are essentially 
a topological phenomenon (cf also Keller et a1 and Rasetti in Guttinger and Eikemeier 
(1979) and Stewart (1981)). 

Changing the fractal’s length scale led to scaling of the free energy per unit volume 
and determined (via the correlation function) the dimension D = n (2 - q)/(n - 1) of 
the fractal lattice. As a test of the model bicritical, tricritical and tetracritical exponents 
have been calculated. These exponents turned out to depend via A 2  on the fractal 
dimension D and via 6 on the Euclidean dimension fi and the small parameter 4. If 
fi = D  and q = fj = 0 the n-critical exponents of the Landau theory follow from our 
model. If fi = 3 and q = f j  = 0, improved n-critical exponents are found. If q, f j  are 
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chosen slightly different from zero, or equivalently, D is chosen slightly different from 
Do=2n/(n-1) and fj slightly different from zero, it turns out that most of the 
experimental and theoretical exponents can be reproduced with good accuracy. In 
table 5 we compare the values of the parameters governing Landau exponents with 
those reproducing experimental mean exponents. 

Table 5. Choice of D, ij for Landau and experimental exponents. 

Landau Experiment 

n (rs = 3 )  17 
D Lattice Order D 

Transition free energy (rs = D )  17 

Bicritical cusp 2 4 0 3.92 0.08 
Tricritical Butterfly 3 3 0 2.86 -0.06 
Tetracritical Star 4 813 0 2.53 -0.10 
Pentacritical . .  5 512 0 
. . .  

For small n the influence of 7 on D is very small and for critical behaviour D is 
determined almost completely by n. But for n = 4 the dimension D = 2.53 of the 
fractal lattice governing the experimental exponents is almost the same as D = 2.50 
which models Landau pentacritical behaviour. Furthermore, the difference between 
n-critical and ( n  + lbcritical exponents becomes smaller the larger n and the 
qualitative behaviour of V,, which depends alone on the codimension c = 2n - 2, 
dominates the transitions completely whatever the exact values of 7, f ,  provided the 
latter remain small as experiments indicate (0 s 7 c 0.1). At the elementary level of 
our model a deduction of the free parameters 7 and fj is not possible. It is conjectured 
that 7, fj are related to the detailed physical structure of the interaction. 

As the order n of criticality of the phase transition increases so does the degree 
of degeneracy, i.e. the singularity, of V, and the fractal lattice dimension decreases, 
D + 2 - 77. Since, as we shall indicate below, D may be interpreted as a measure for 
the effective interaction between the subsystems or samples which make up the real 
system, this implies that the ‘degree’ of interaction decreases with the order of 
criticality. For 77 = 0, the dimension D = 2n/(n - l), i.e. D = 4,3,2.67,2.5,  . . . , 
reflects the result of the renormalisation group theory that for each successive D a 
new direction of instability appears in parameter space with the order of the potential 
function in the Hamiltonian for the fixed point increasing by 2. 

We have confined our discussion to a single order parameter, i.e. to cuspoid normal 
forms acting as organising centres (cf. e.g. Stewart (1981) for the terminology) for 
singularities in the family of free energies depending on one essential order parameter. 
However, it should be pointed out that cuspoids of a given order can be generated 
from cuspoids of lower order by a Legendre transformation with respect to x (Sewell 
1978, Keller 1979). Therefore, other thermodynamic potentials (related to the free 
energy by a Legendre transformation) can be classified by means of catastrophe theory, 
too (Guttinger and Keller 1982). 

The corank-1 cuspoid geometry makes the introduction of a fractal dimension 
D < 3 imperative for tetracritical and higher-order phenomena, even in the Landau 
limit. However, if D is smaller than the dimension of the real system one runs into 
interpretational problems. For, D<3 implies that each lattice site of the fractal 
interacts with fewer than the six other sites surrounding it. This means that each 
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subsystem interacts with fewer subsystems than its nearest spatial neighbours. This, 
in turn, implies that at least for tetracritical and higher-order critical-but possibly 
also for tricritical-phenomena the real interaction in three dimensions must be 
anisotropic with respect to long-range forces. This strongly indicates that two order 
parameters ( x l ,  x 2 )  should be introduced (Keller 1979). The cuspoid ‘star’ normal 
form, therefore, can be expected to give only an incomplete picture of real tetracritical 
behaviour although the tetracritical exponents came out quite well. Incomplete means 
here that the order parameter relation x ( m )  remains true, but that the physical order 
parameter m may be some function of two underlying physical order parameters m l ,  
m2 giving rise to relations x l ( m l ) ,  x2(m2), whence a relation x ( x 1 ,  x 2 )  must hold. On 
the other hand, one may assume as well that tetracritical behaviour is governed by 
the unimodal family X9 (in Arnol’d’s notation), i.e. by the unfolding of the double 
cusp x:  + a2x:x; + x l .  The reason is that Xg is the simplest corank-2 singularity which 
is bounded below. X9 has been used by Keller (1979) to analyse tetracritical behaviour 
and by Keller et a1 (in Guttinger and Eikemeier 1979) to model ferroelectric- 
ferromagnetic, crystalline-superfluid etc systems and binary mixtures in a qualitative 
way. Triple junctions in caustic networks exhibiting hexagons are described by X9, 
too (Berry and Nye 1977, Berry and Upstill 1980). Moreover, the double cusp X9 
apparently also governs nucleation and percolation clustering (Dukek 198 1). Since 
these phenomena play an increasing role in phase transitions of various kinds (equili- 
brium critical phenomena (Gefen et a1 1980), non-equilibrium problems such as chaos 
(Ott 1981), transitions from hadronic to nuclear and to quark condensates (Satz et 
a1 1981)), and seem altogether to be describable in terms of catastrophe and 
singularity theory on fractal lattices, we shall explore these questions in a forthcoming 
paper (Guttinger and Keller 1982) which will also shed some light on the role played 
by symmetries and imperfections in critical phenomena (Golubitsky and Schaeff er 
1979, Sattinger 1980, Armbruster et a1 1981). 

We have shown that n th-order equilibrium phase transitions are topological 
phenomena determined completely by the codimension and corank of the topological 
normal form of the free energy. Consequently, critical-point universality is a con- 
sequence of the principle of structural stability rather than a hypothesis. The prediction 
of critical exponents which agree with experiment and those of exactly or approximately 
solvable models was a consequence of the scaling laws resulting from the internal 
fractal dimensionality D of the system. While structural stability, or persistence of a 
phenomenon under slight perturbations, is a well established first principle of nature, 
the meaning and physical significance of a fractal dimension remains still some sort 
of mystery. The following observations serve to clarify the situation. The integer 
Euclidean dimension 6 = 0 (a point), = 1 (a line), = 2 (a plane) and so forth, which we 
are intuitively used to, is nothing but a similarity dimension. To see this, divide each 
side of a D = 2-dimensional Euclidean rectangle into 1 equal parts. This gives N = l 2  
self-similar rectangles, with affine diminution ratio r ( N )  = 1/1= N-1’2. More gen, 
erally, for an Euclidean IS-dimensional parallelepipoid one finds that r ( N )  = l /N”D, 
i.e. 15 = log N(r)/log ( l / r ) .  Generalising this to IS + D  non-integer and passing to the 
limit yields the Hausdorff-Besicovitch fractal dimension D = lim,,o log N(r)/ log ( l / r )  
of a compact metric space M by covering it with N ( r )  D-dimensional spheres of 
radius r. Thus D is a similarity dimension as is D because every 1 divides the fractal 
into N = I D  similar parts, and N ( r )  a rFD. 

The scaling law N(ar )  = a-DN(r)  is an immediate consequence of the definition 
of D and the self-similarity of the fractal. Since D E R + ,  the integer Euclidean 
dimension IS is an exception rather than the rule. Fractals are geometric objects with 
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hierarchical structure down to arbitrarily small scales whose macroscopic forms are 
self-similar to their microscopic parts, i.e. objects with no length scale at all, physics 
permitting. Every fractal can be embedded into an Euclidean space and when looked 
at from this, its points appear totally inhomogeneously distributed. But when looked 
at within its own fractal dimension, the fractal object is completely homogeneous. If 
there is an inherent minimum unit length defined in a fractal, the resulting object 
forms a fractal lattice and the number s of nearest neighbours of a given lattice site 
is s = 2D as in the Euclidean case. We have assumed a Hamiltonian with nearest- 
neighbour interaction. Since each lattice site corresponds to precisely one sample of 
the real physical system, the dimension D describes the real effective interaction 
between the samples and, as we have seen, this interaction decreases with increasing 
criticality. D > 3 corresponds to an effective long-range interaction, D < 3 indicates 
an asymmetry in the interaction that points to the introduction of two order parameters. 
This may be understood in geometric terms. A 6-dimensional system, 6 an integer, 
made up of short-range interacting subsystems, will exhibit long-range interaction 
between its constituents when it is folded indefinitely in (6 + 1)-dimensional space. 
For example, by folding an infinite one-dimensional spin chain with only nearest- 
neighbour interaction in a two-dimensional plane, spins from far distant chain segments 
come close enough to interact via the second dimension without being near neighbours 
in the one-dimensional chain. Since, however, no folding whatsoever of a line can 
fill or create even an infinitesimal area of a plane, the folded chain represents an 
object with fractional dimension D, 1 < D < 2. Similarly, to implement a three- 
dimensional lattice with long-range interaction, a three-dimensional lattice with short- 
range interaction between the subsystems occupying its sites must be folded indefinitely 
in four-dimensional space until it models a three-dimensional one with long-range 
interaction. The folded object thereby acquires a fractional dimensionality D with 
3 < D < 4. Folding, therefore, creates long-range out of short-range interaction by 
allowing the physical forces to thrust from 6-towards (6 + 1)-dimensional space. By 
folding, the object acquires non-integral dimensionality because, being non-smooth, 
it consists of infinitely more points than the 6-dimensional smooth one but possesses 
infinitely fewer points than the (13 + 1)-dimensional one. The folded object possesses 
short-range interaction in D-dimensional space whereas the three-dimensional object 
to be modelled exhibits long-range interaction. The fractal dimension D is closely 
related to the entropy definition of Pontryagin (1932) and Hawkes (1974) because 
of the covering (i.e. measurement) procedure we have used. This is probably also at 
the root of chaotic regimes governed by fractional dimensional strange attractors. 
Furthermore, the tantalising analogies between fractal-lattice singularity theory of 
critical phenomena and the theory of waves encountering a random structure (Berry 
1977, 1978, 1979) lead one to conjecture that critical behaviour as the reduced 
temperature tends to zero may correspond to the short-wavelength limit of optics and 
that the correct behaviour is embodied in a series of universal exponents. These are 
fascinating questions which we hope to explore in a forthcoming paper. 
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